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More Efficient Sampling
from Social Networks
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Abstract

Techniques for sampling from networks have grown into an important area of
research across several fields. For sociologists, the possibility of sampling from a net-
work is appealing for two reasons: (1) A network sample can yield substantively inter-
esting data about network structures and social interactions, and (2) it is useful in
situations in which study populations are difficult or impossible to survey with tradi-
tional sampling approaches because of the lack of a sampling frame. Despite its appeal,
methodological concerns about the precision and accuracy of network-based sam-
pling methods remain. In particular, recent research has shown that sampling from a
network using a random walk–based approach such as respondent-driven sampling
(RDS) can result in a high design effect (DE): the ratio of the sampling variance to the
sampling variance of simple random sampling (SRS). A high DE means that more cases
must be collected to achieve the same level of precision as SRS. In this article, we pro-
pose an alternative strategy, network sampling with memory (NSM), which collects
network data from respondents to reduce DEs and, correspondingly, the number of
interviews needed to achieve a given level of statistical power. NSM combines a ‘‘list’’
mode, in which all individuals on the revealed network list are sampled with the same
cumulative probability, with a ‘‘search’’ mode, which gives priority to bridge nodes
connecting the current sample to unexplored parts of the network. We test the rela-
tive efficiency of NSM compared with RDS and SRS on 162 school and university net-
works from the National Longitudinal Study of Adolescent Health and Facebook that
range in size from 110 to 16,278 nodes. The results show that the average DE for
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NSM on these 162 networks is 1.16, which is very close to the efficiency of a simple
random sample (DE = 1) and 98.5 percent lower than the average DE we observed
for RDS.

Keywords

Social networks, sampling, respondent driven sampling, hidden populations, random
walks, graph theory

1. INTRODUCTION

The prospect of sampling from social networks has long intrigued social scientists

(cf. Goodman 1961). To fix terms, we define a sample from a social network as one

in which current respondents help recruit new respondents through either active

(when respondents ‘‘drive’’ recruitment by bringing in new subjects) or passive

(when they facilitate contact between researchers and would-be subjects) means.1

Such an approach is a special case of a ‘‘link-tracing’’ sampling design that can be

applied to sampling from any relational network, social or otherwise. For sociologists,

the motivation to sample from social networks comes from three sources: (1) a gener-

ally accepted belief that respondents, even stigmatized ones, are more likely to partic-

ipate and respond truthfully in surveys when they are referred by acquaintances or

friends rather than randomly contacted; (2) an increasing desire to understand rela-

tional network structures and a growing body of theory suggesting the importance of

social influence; and (3) heightened interest in understanding stigmatized populations

(such as those at risk for human immunodeficiency virus [HIV] infection) that are dif-

ficult to survey with traditional methods. Although it was long thought that samples

from networks could not yield unbiased results, work in graph theory on the logic of

random walks (RWs) on graphs, which have been widely studied in the mathematics,

physics, and computer science literatures (cf. Lovasz 1993), has shown that unbiased

mean estimates are attainable. A basic finding is that under certain conditions, if the

RW proceeds long enough, it will eventually settle into an equilibrium state in which

the sampling probability is inversely proportional to the respondent’s number of social

ties (Lawler and Coyle 1999), which can be used as a weight to accurately estimate

sample means and proportions (Volz and Heckathorn 2008). Overall, the potential

appeal of link-tracing sampling methods should be growing in the current research cli-

mate as a result of declining survey participation rates and the challenge of contacting

willing participants (Atrostic et al. 2001), because of increased interest in social net-

work effects and peer influence (e.g., Burt 1984), and because of increased funding

for studying marginalized groups, such as those at risk for HIV transmission.

Some of the best evidence for the effectiveness of link tracing–based sampling

methods in human social networks comes from work on stigmatized, hidden, and

hard-to-reach populations, which have historically been understudied because of the

challenge of recruiting them. A recently developed RW-based approach,
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‘‘respondent-driven sampling’’ (RDS), collects data on the number of ties each

respondent has (Heckathorn 1997; Johnston 2008; Volz and Heckathorn 2008; cf.

Gile and Handcock 2010 for a recent summary of this approach). Under certain

conditions—in particular, a connected component with at least one triangle and

undirected ties (i.e., everyone in the population is reachable through some chain of

connections from everyone else, there is at least one group of three people who are

all connected to each other, and all ties are reciprocated), a sufficiently long chain of

referrals, sampling with replacement, and a large study population—the probability

of being sampled is proportional to the number of ties that each respondent has. As a

result, the inverse of the self-reported number of ties can be used as a sampling

weight. Because of the attractiveness of its hypothetical sampling properties, the

RDS approach has been widely used by researchers to study hidden populations such

as intravenous drug users, undocumented immigrants, jazz musicians, and so on (cf.

reviews by Abdul-Quader et al. 2006; Ramirez-Valles et al. 2005).

Despite the popularity of RDS, recent research indicates that the accuracy of the

approach is sensitive to the assumptions it makes about the social network of the

underlying population (Gile and Handcock 2010; Goel and Salganik 2010; Lu et al.

2012). A fundamental problem with RW-based approaches in general, and RDS in

particular, is that they have a higher sampling variance than simple random sampling

(SRS). Whereas the sampling variance of a simple random sample is inversely related

to sample size, the precision of RDS and RWs is a function of both sample size and

the structure of the network: Bassetti and Diaconis (2006) and Goel and Salganik

(2009) showed that the variance of an RW is mathematically related to the eigenvalue

decomposition of the network (i.e., its underlying structure) and the degree to which

the dependent variable maps onto the corresponding eigenvectors. In networks with

high degrees of clustering, RDS has a tendency to get stuck in segregated components

of the network, which can result in inaccurate samples. In certain networks, the var-

iance of a respondent-driven sample could be unacceptably high, but the researcher,

with no knowledge of the network that he or she was sampling from, would be unable

to distinguish between accurate or inaccurate results. Given this fundamental uncer-

tainty, the ability to infer population-level prevalence from random walk-based sam-

ples is questionable. Indeed, Goel and Salganik (2010) found very high levels of

sampling variance for RDS in simulated sampling using real network data.

In this article, we propose a new approach, ‘‘network sampling with memory’’

(NSM), which builds on recent developments in the mathematics and computer sci-

ence literatures on sampling large networks that modify the basic random-walk

approach by incorporating information on the local topography of the network, infor-

mation on recently sampled cases, or multiple dependent RWs to improve sampling

efficiency (Alon et al. 2008; Avin and Krishnamachari 2008; Berenbrink et al. 2010;

Cooper, Frieze, and Radzik 2009; Ikeda, Kubo and Yamashita 2009; Kharusi 2008;

Ribeiro and Towsley 2010). As we discuss in this article, NSM improves the effi-

ciency of sampling from a network by collecting network data from respondents as

part of the survey, which is used to gradually reveal the list of population members.

As the sample progresses, the list of people who have been nominated in the survey
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begins to resemble the full list of population members, which allows NSM to approx-

imate the process of SRS.

NSM samples from the network list by using two modes of sampling, a ‘‘list’’

mode and a ‘‘search’’ mode. The list mode is very simple: The next person to be

interviewed is selected by sampling with replacement from the list of all people who

have been nominated. When a new person is added to the list (i.e., when someone is

nominated for the first time), he or she is sampled at the current cumulative sampling

rate (CSR, defined below) of the sample to ensure that all individuals who have been

nominated have the same probability of being sampled (otherwise, cases that were

sampled first would be overrepresented).

The search mode attempts to speed up the process of exploring large or compli-

cated networks by identifying respondents who appear to be ‘‘bridge nodes’’ to unex-

plored clusters of the network. We define bridge nodes as respondents who have high

proportions of friends who have not been nominated by anyone else in the sample col-

lected up until that point. The search mode gives priority to the unsampled friends of

these bridge nodes, which pushes the sample toward new and unexplored regions of

the network. NSM combines the search and list modes together, using the search mode

first until the network has been explored and then switching over to the list mode.

In the analysis section of this article, we test the relative precision and accuracy

of NSM compared with RDS and RWs by conducting simulated sampling on 162

actual social networks, 62 school networks from the National Longitudinal Study of

Adolescent Health (Add Health) and 100 large university networks from Facebook.

The results indicate that NSM results in high levels of sampling precision (with sam-

pling variances close to those of SRS), even on networks characterized by high

degrees of clustering and homophily. Overall, we argue that NSM will prove useful

for researchers in a variety of fields in which collecting network data on social inter-

action is substantively interesting and in which it is desirable to use the network data

to improve the efficiency and precision of the sampling process.

2. BACKGROUND

2.1 Referral-based Sampling of Hidden Populations

Hidden populations are an important area of study for understanding sociological

topics such as the dynamics of disease transmission, immigration, the underground

economy, and homelessness. They are also a prime area for referral-based sampling

approaches because they are demonstrably challenging to survey with other sampling

approaches (Kendall et al. 2008). Recently, the use of referral-based sampling meth-

ods in the study of hidden populations has been accompanied by important theoreti-

cal and statistical developments (Heckathorn 1997, 2002, 2007; Magnani et al. 2005;

McKnight et al. 2006; Salganik and Heckathorn 2004). The key innovation, RDS,

builds on the idea of taking a ‘‘random walk’’ on a network and has two properties

that make it useful for sampling hidden populations. The first has to do with the

recruitment process. In RDS, respondents are paid for their participation in the study
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and incentivized to recruit others. Such incentives take the form of coupons, a fixed

number of which are given to members of the current wave of respondents. New

respondents must present coupons obtained from prior respondents to enter the study.

The use of coupons allows the tracking of recruitment chains, the payment of respon-

dents for recruiting new members, and the maintenance of a high degree of confiden-

tiality with minimal risk for participants and researchers (Yeka et al. 2006).

The second important property of RDS for sampling purposes is a statistical inno-

vation. Respondents are asked to estimate how many people they know in the hidden

population, and the inverse of each person’s estimate is then used as a sampling

weight. It has been shown (Goel and Salganik 2009; Salganik and Heckathorn 2004;

Volz and Heckathorn 2008) that such weighting is a mathematically appropriate

technique for characterizing recruitment probabilities in a sample from a network if

respondents are able to estimate their popularity with reasonable accuracy (cf. Neely

2009 for how errors in this estimation influence RDS estimates).

RDS has become quite popular: Johnston et al. (2006) cited 128 applications in

countries outside of the United States, and the Centers for Disease Control and

Prevention have adopted the method on a large scale to understand the dynamics of

HIV in the American injection drug user community (Abdul-Quader et al. 2006). As

a measure of the level of endorsement of RDS by funding agencies, a search of

recent National Institutes of Health grants indicates that at least $100 million in fund-

ing has been awarded to projects with ‘‘respondent driven sampling’’ and its variants

in the keywords (National Institutes of Health 2011). Overall, the recent popularity

of RDS has made it the ‘‘gold standard’’ against which competing proposals to

understand hidden and hard to reach populations (e.g., time-location sampling, tar-

geted sampling) are evaluated.

However, although methods to sample hidden and hard-to-reach populations have

overcome many of the challenges facing referral-based sampling, they have generated

a new set of criticisms. Most critiques have focused on the unrealistic nature of the

method’s assumptions (Gile and Handcock 2010; Goel and Salganik 2009), though

new approaches show that modifications to the method can make it less dependent on

some of these (e.g., Gile 2011; Neely 2009). Although these are important problems,

the most damaging critique is that the method is highly ineffective, even when

assumptions are met. The problem is that referral-based approaches, although provid-

ing unbiased mean estimates, yield far more variable results than traditional survey

sampling (Goel and Salganik 2009). This necessitates collecting larger sample sizes

with referral-based sampling than would be needed from random sampling to main-

tain the same level of statistical power. Perhaps the most important evidence of this

effect comes from an innovative study that simulated respondent-driven samples on

real-world social networks (Goel and Salganik 2010). There, the authors found that

results from RDS were up to 70 times more variable than would be found had com-

parably sized simple random samples been taken (also see Lu et al. 2012). Such simu-

lation evidence accords with other studies. For instance, repeated respondent-driven

samples of the same population have shown substantial variability in socially salient

traits (Ma et al. 2007), and the confidence intervals of respondent-driven samples
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from known populations do not always not contain the true population values and can

often be too wide to be of use (Wejnert 2009; Wejnert and Heckathorn 2008; see dis-

cussion in Goel and Salganik 2010). Of course, a large number of surveys conducted

by those with deep familiarity with the populations at hand have found that RDS

results are often quite reasonable (cf. Malekinejad et al. 2008). However, as demon-

strated by the simulation studies, there is the danger that any given RDS estimates

may be far from the true population value.

2.2 Network-based Sampling in Nonhuman Populations

Other fields have also been active in developing new network-based sampling meth-

ods. As mentioned above, a large literature has focused on the properties of RWs on

graphs. Bassetti and Diaconis (2006) derived the variance of an RW on the basis of a

spectral decomposition of the network structure, and Goel and Salganik (2009)

related this to the variance of RDS estimates. More generally, this literature (cf.

Lovasz 1993 for a review) is focused on the mixing time (the number of steps until

the sampling probabilities converge) and cover time (the time needed until all nodes

are sampled) of RWs on graphs. There is a direct connection between the accuracy of

a sample derived from an RW and the mixing and cover time, because the more steps

that are needed, on average, to reach the equilibrium sampling distribution or to sam-

ple all of the cases, the less accurate that any given size sample will be compared

with SRS. In computer science, a rapidly expanding literature focuses on practical

aspects of improving the speed and accuracy of RWs to sample from the Internet, but

other examples include sampling from electrical networks and map exploration (e.g.,

Gasieniec and Radzik 2008).

Avin and Krishnamachari (2008) proposed a modification to the random-walk

strategy in which, at each step, neighbors of the current node are queried, and the

one with the fewest visits from the RW is selected as the next step. At each step, this

pushes the RW back to nodes whose neighbors are least likely to have been explored.

In a related approach, Berenbrink et al. (2010) and Yu and Newman (2008) allow

the RW to explore the network in the vicinity of the current case before taking the

next step. This collection of local information helps the walker know whether it is in

a well-explored cluster or a new area. Alternatively, one can use multiple networks

derived from the multiplex connections that link people to move between different

parts of the network: Gjoka et al. (2010) showed that problems of sampling between

segregated or disconnected components of large online social networks can be

reduced by using multiple types of connections between users (i.e., group or event

participation), even if there is no sample frame. If there is some means of obtaining a

list of nodes in the network, Thompson (2006), Ribeiro, Wang, and Towsley (2010),

and Avrachenkov, Ribeiro, and Towsley (2010) proposed an adaptive RW, whereby

an RW is supplemented by periodic jumps to randomly selected parts of the network;

a similar method was pioneered by Google to rank Web pages (Brin and Page 1998).

Such approaches have been shown to reduce the number of cases needed to sample

the network effectively.
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A simple modification of the basic RW is to provide a temporary restriction on

nodes that can be visited. Kharusi (2008) proposed an RW with memory—a ‘‘forward

RW’’—on the basis of preventing the walk from returning to the k most recently vis-

ited cases and found that cover times decreased dramatically compared with simple

RWs in networks with high diameter (the distance between the most separated nodes

of the network). Similarly, Alon et al. (2007) found an improvement in the mixing

rate by not allowing the walk to go back to the most recently sampled case.

A slightly different approach uses information about a node’s neighbors to tilt the

selection probabilities in favor of visiting certain types of nodes. Ikeda et al. (2003,

2009) showed that the cover time of an RW can be reduced by modifying the transi-

tion matrix to oversample low-degree neighbors of the current node. Ikeda et al.

(2009), for example, showed that under certain conditions, the cover time for an RW

can be reduced from O(G3) to O(G2) (where G is the number of nodes in the net-

work) by using a biased transition matrix that weights the probability of selection of

a node proportional to the inverse square root of its degree.

Finally, an alternative approach is to use multiple independent RWs rather than a

single RW. In human populations, this is roughly comparable with starting RWs from

multiple seeds. The use of multiple RWs has been found to reduce cover times (Alon

et al., 2008; Cooper et al. 2009; Elasser and Sauerwald 2010), but it is still possible

for each individual RW to get stuck in subgraphs of the overall network. Ribeiro and

Towsley (2010) proposed an approach based on multiple dependent RWs, in which

the multiple walks share the same sampling process, and showed that this approach

has a faster mixing time than multiple independent walks and single RWs in simula-

tions on several large social media networks.2

An important difference between this recent literature on improved random-walk

algorithms in large networks such as the Internet, mobile networks, and electrical

grids and sampling from human populations is the cost of an interview. In the former,

the cost of each interview (i.e., querying a node of the network) is small, often a mat-

ter of nanoseconds of computer time. Instead, the size of the underlying networks is

the key issue, and computers’ memory restrictions place limits on the collection and

processing of topographic network information for large sample sizes. As a result,

most of the articles discussed focus on how little extra information and memory is

needed per case to improve the sampling efficiency. In contrast, in sampling from

human populations, the cost in terms of time and effort in obtaining and conducting

face-to-face or telephone interviews represents the key constraint, and as a result, the

overall sample size may be small. This is important because the efficacy of sampling

from human social networks cannot rely on surveying a large number of people;

indeed, the approaches used in computer science and elsewhere to reduce cover and

mixing times seem like a good starting place for devising a new approach to sam-

pling from social networks that performs well in finite samples.

In the next section, we build on this recent literature in computer science to pro-

pose a method for sampling from a network that uses the collection of social network

data to retain a ‘‘memory’’ of the network and improve the efficiency of the sam-

pling process. At the end of the article, we argue, on the basis of classic (e.g., Burt
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1984; McCallister and Fischer 1978) and contemporary work on interviewing people

about networks (e.g., Sandberg et al. 2008), that collecting data on a large number of

respondents’ alters is feasible in sampling from human populations and that the gains

in sampling accuracy and efficiency outweigh the added cost of the collection of net-

work data.

3. METHOD

A key consideration of our approach is that we want a method that has desirable

asymptotic and finite sample properties: Not only do we want a method that is

asymptotically unbiased (like RW-based approaches such as RDS when its assump-

tions are met), but we want the sampling variance and mean absolute bias (MAB) to

decline rapidly in the kinds of finite sample sizes actually collected in practice when

sampling from human populations. In this section, we outline our proposed solution,

which consists of two different modes of sampling: a list mode that guarantees

asymptotic unbiased estimates and a search mode that is designed to work in tandem

with the list mode to improve the precision of estimates in finite samples. To clarify

the presentation of our method, Table 1 provides a glossary of terms used in this sec-

tion of the article. In addition, in section 3.B.2 below, we provide an example of a

sample drawn using the list mode to illustrate the basic mechanics that are involved.

First, imagine that we are sampling from a population, A, that consists of G indi-

viduals (‘‘nodes’’) who are connected through a social network. We assume that there

is no sampling frame; that is, there is no list of the N members of the population that

would allow for SRS. The basic intuition of our approach is quite simple: We use the

sampling process to uncover the list of population members and then sample from

that list with replacement.3 We call our approach ‘‘network sampling with memory’’

because we use name and demographic data on respondents’ network members to

‘‘remember’’ the network; however, other types of data about network alters could be

collected (e.g., Dombrowski et al. 2011).

The survey begins with an initial ‘‘seed’’ respondent.4 Each step in the sampling

process consists of an interview with a respondent that, in addition to the substantive

survey questions, asks for a network roster of the respondent’s friends or contacts

who are members of population A. In each step, new network members are added to

list L, which consists of all members of A who have been nominated by a respon-

dent.5 L also keeps track of the cumulative number of nominations each node has

received. Let S indicate the current ‘‘step’’ of the sample (i.e., the number of inter-

views that have been completed), and let LS indicate the number of people on the

network roster L at step S.

3.1 List and Search Sampling Modes

NSM consists of two sampling modes, list and search. It is easiest to describe these

sampling modes by beginning with what we call the ‘‘naive list’’ mode of sampling

from the network roster.
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Table 1. Glossary of Terms Used

Term Definition

List mode The process of evenly sampling from the list L of nodes that have
been nominated (see section 3.B).

Even sampling Sampling all nominated nodes (all nodes 2L) at the same rate. Newly
nominated nodes are sampled at the current cumulative sampling
rate of the existing sample (see section 3.B).

Search mode Using bridge nodes to sample unexplored clusters of the network
(see section 3.C).

Hybrid approach The combination of the list and search modes (see section 3.C).
A The population that is being sampled.
G Number of nodes (people) in the network connecting population A.
Ĝ = LS

1�P1 The estimated size of the network using the capture-recapture
method (see equation 5).

S The current ‘‘step’’ of the sample: the number of interviews that
have been completed.

L The list of nodes/people that have been nominated by respondents
on the network rosters.

LS The number of nodes that have been nominated by step S of the
sample.

ES The number of nodes eligible for sampling via the list mode in step S
of the sample (see section 3.B.1).

P1 The proportion of nominated nodes 2L that have been nominated
once and only once in the sample.

S1 The step that even sampling begins for the list mode (see section
3.B).

CSRj The cumulative sampling rate for node j (see equation 2).
ESR The even sampling rate. The cumulative sampling rate since the start

of even sampling (see equation 3).
di The degree of node i. This is the number of friends that node I has

in population A.
p_nomi The probability that node i has been nominated after S steps.
Bridge node A node connecting different clusters of the network.
cj The number of j’s friends who have been nominated once and only

once in the sample.
p1j =

cj

dj
The proportion of j’s friends who have been nominated 1 time in the

sample.
A1 The minimum level of P1 for the use of the search mode. If P1 .

A1, use the search mode; if P1 � A1, use the list mode. A1 = 0.4
is used in the sampling simulations.

Average bias The degree to which the sample means differs from the population
mean, averaged across all replications (see equations 11 and 12).

Mean absolute
bias (MAB)

The expected magnitude of the bias on any single replication (see
equation 13).

Sampling variance How much variance there is in the sample estimates (see equation
15).

Design effect (DE) The ratio of the sampling variance of the method to the sampling
variance of SRS (see equation 16).
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3.1. A. Naive List Mode. In the naive list mode we sample with replacement from

the accumulated network roster L. The probability that a nominated node is sampled

at step S is

p(sampled) =
1

LS

; ð1Þ

where LS is the currently revealed size of the revealed network.

The problem with the naive list mode is that nodes that are nominated early in the

sample will be oversampled compared with nodes that are nominated later, because

the early nodes are eligible to be sampled for more steps. As early nodes are over-

sampled, this slows down the process of exploring the network.

3.1.B. List Mode and ‘‘Even’’ Sampling. To prevent the problem of oversampling

nodes that are nominated early in the sample, the list mode ensures equal sampling

probabilities by sampling new nodes (i.e., people who are added to L when they are

nominated for the first time) at the same CSR as previously nominated nodes. This

‘‘even sampling’’ starts once the revealed network L reaches a certain size: let LS

indicate the currently revealed size of the network after S interviews, and let P1 equal

the proportion of nominated nodes (L) that have been nominated once and only once

so far in the sample. In the simulations that we conducted for this article, the even

sampling of new nodes begins when either LS � 200 or S . 50 and P1 \ .2 (this

ensures that the list mode is turned on for small networks). Let S1 indicate the step at

which even sampling begins. When S . S1, nodes that are nominated for the first

time in step S are subjected to the same sampling rates experienced by previously

nominated nodes from step S1 to S. A node that is interviewed in this way is called a

‘‘catch-up’’ interview, because it was interviewed while its CSR was ‘‘catching up’’

to the rest of the sample. In the next subsection, we describe this process more

precisely.

3.1.B.1. Even sampling and catch-up interviews. Let Q be a node that is nominated

for the first time in step S, let UZ be a uniform random number between 0 and 1, and

let Z = {S1, S1 + 1, . . . S} indicate the steps from S1 to the current step S, excluding

steps that were catch-up interviews themselves (see steps 80 to 82 in Table 2 for an

example). We ‘‘retroactively’’ sample node Q in step Z if UZ\ 1
EZ

, where EZ is the

number of nodes that were eligible to be sampled in step Z (see the following defini-

tion of the set of eligible nodes), repeating this process for all steps Z from S1 to S.

The benefit of doing this is that it reduces the advantage that earlier nodes have of

being oversampled compared with nodes that are added to L later in the sample.

The reason we choose LS � 200 as the starting point for the sampling of new

nodes is that if even sampling begins when the network size is too small, the sam-

pling rate of catch-up interviews quickly becomes very large. On the basis of the

results of simulated sampling discussed below on networks ranging in size from 110

to 16,278 nodes, LS � 200 worked very well, although other thresholds above or

below 200 could also work. In general, for networks that are larger than the ones that

we evaluate in this article, LS should be set higher to ensure that the even sampling
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rate (ESR) does not get too large too quickly.6 Moreover, in very large networks, the

hybrid approach (which combines the search and list modes, discussed below) works

the best, as demonstrated by the results presented later in this article.

In addition to ensuring that all nodes sampled after S1 are sampled at the same

rate, we also want to equalize the CSR of nodes that were sampled before S1. After

even sampling is turned on in step S1, we do this by excluding nodes that have high

cumulative sampling probabilities until the rest of the sample catches up to them.

Define each node’s CSR as

‘‘cumulative sampling rate’’(CSRj) =
XS = b

S = a + 1

1

ES

, if j 2 eligible nodesS ; ð2Þ

where a is the step that node j was first nominated, b is the current step, ‘‘j 2 eligible

nodesS’’ indicates that node j was eligible to be sampled at step S, and ES is the num-

ber of nominated nodes eligible to be sampled in step S.

The sum of the step-by-step sampling rates since the initiation of even sampling

is the ESR defined in equation 3 (for an example of the calculation of the ESR, see

Table 2). We exclude catch-up interviews in the calculation of the ESR:

‘‘even sampling rate’’(ESR) =
XS = b

S = S1

1

ES

, S 62 ‘‘catch-up interview’’: ð3Þ

To even out the sampling rate of early nodes, after step S1, we temporarily exclude

any node j from the set of nodes that are eligible to be sampled in step S if CSRj .

ESR. These nodes are not eligible for sampling until the ESR increases. If there are

fewer than 100 nodes where CSRj � ESR, then the list of eligible nodes at step S

consists of the 100 nodes with the lowest CSRj.

Definition of ES: On the basis of equations 2 and 3, we define ES as the set of

nodes eligible to be sampled by the list node in step S, which consists of all

nominated nodes that have CSRj � ESR unless the total number of nomi-

nated nodes with CSRj � ESR is less than 100, in which case ES consists

of the 100 nodes with the lowest CSR.

In summary, we list the sequence of steps involved in the list mode:

B1. Randomly select the next node to interview from L, sampling with replace-

ment. If even sampling has been turned on (S � S1), then only nodes 2 ES

are eligible to be sampled. Let W indicate the node that is selected in

step B1.

B2. Interview node W, and update the network roster L.

B3. If even sampling has been turned on, use the catch-up procedure described

in section 3.B.1 to see if any newly nominated nodes are randomly selected
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to be interviewed. If a new node is selected, this newly nominated node now

becomes node W. Go to step B2.

B4. Return to step B1 until the desired sample size has been reached.

3.1.B.2. Example of sampling using the list mode. To illustrate how the list mode

works in practice, Table 2 describes the sampling process for a single sample

drawn from the 400-node test network, which is discussed in detail below. Table 2

consists of 10 columns of information about each step of the sample. Column 1

shows the step number, and column 10 shows the ID of the node that was inter-

viewed in that step. The current size of the revealed network, L (column 2), is

updated after the interview and shown in the next step. For example, the sample

begins with step 0, which is the initial seed (node 92). Node 92 has 7 friends in

the network, so the size of the revealed network as we begin step 1 is 8 (the seed

node + 7 friends), and the effective sampling rate for Step 1 is 1
8

= 0:125 (column

5). By step 5, a total of 25 different nodes have been nominated (L = 25), and the

sampling rate for step 5 is 0.04.

Columns 6 to 9 show the CSR of four of the nodes in the network (ID numbers 1,

101, 201, and 301). Node 1 is nominated for the first time by node 23 in step 4 and

is eligible to be sampled for the first time in step 5 (hence, its CSR in step 5 is 0.04).

Node 301 is eligible to be sampled for the first time in step 7. Note that because

nodes 1 and 301 were nominated early in the sample, they accumulate a higher CSR

compared with nodes 101 and 201. By step 39, for example, the CSR for node 1 is

0.323978, while nodes 101 and 201 have yet to be nominated by any of the nodes

that have been interviewed so far.

In step 41, even sampling is turned on because the revealed network size is greater

than 200. Now, all nodes that are nominated for the first time will be sampled at the

ESR defined above in equation 3. After the start of even sampling, only nodes with

CSR (columns 6 to 9) less than or equal to the ESR (column 4) are eligible for sam-

pling. In this example, nodes 1 and 301 are temporarily excluded from sampling start-

ing in step 41. The only exception to this is right after the start of even sampling if

there are fewer than 100 nodes with CSR � ESR. In this case, the 100 nodes with

the lowest CSR are eligible to be sampled.7

By Step 79, the number of revealed nodes is 357, and the ESR has risen to

0.205092, which means that newly nominated nodes have about a 20 percent chance

of being interviewed. On the basis of random draws using the process described in

section 3.B.1, steps 80 to 82 resulted in catch-up interviews for which nodes that

were nominated for the first time were randomly selected to be interviewed them-

selves. The benefit of this procedure, in addition to ensuring a gradual even sampling

of the network, is that the sample gets pushed toward newly discovered parts of the

network.

Finally, in step 251, all of the nodes in the network have been nominated, and the

CSR of all nodes is equal to the ESR or, for nodes that were temporarily excluded

from sampling eligibility, slightly less than the ESR. In Table 2, nodes 101 and 201

have a CSR equal to the ESR (0.641112), while the two nodes that were nominated
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early in the sample are slightly lower (0.63988 for node 1 and 0.640566 for node

301).8 The key point is that in step 251, the entire network has been revealed by the

survey and all nodes have been ‘‘evenly’’ sampled, just as if they had been sampled

with SRS, even though no sampling frame was available at the start of the sampling

process. In the next subsection, we discuss sampling weights, and later, in section 5,

we discuss diagnostics for convergence to SRS when the overall size of the network

is unknown.

3.1.B.3. Nomination probability weights for the list mode. If the network has not been

completely explored (if not all of the members of population A have been nomi-

nated), then high-degree nodes are more likely to have been nominated than low-

degree nodes simply because they know more people. We estimate the nomination

probability on the basis of degree, assuming a random sampling of nodes. For exam-

ple, in a 500-node network, the probability that node i of degree di will be nominated

by a respondent in any single interview is di

500
. Similarly, the cumulative nomination

probability for node i after S interviews is

p nomi ffi 1� (1� di

G
)S ; ð4Þ

where G is the number of nodes in the network.

Because G is unknown when we are sampling unknown networks, we estimate G

using the capture-recapture method (see Dombrowski et al. 2011 for a discussion of

the capture-recapture method from social networks and a data collection strategy sim-

ilar to that advocated here):

Ĝ =
LS

1� P1
; ð5Þ

where L is the current number of nominated nodes, and P1 is the proportion of nomi-

nated nodes that have been nominated one time.9 See equations 9 and 10 below for

the use of composite weights combining p_nom and the CSR to calculate the sample

mean. Note that as the sample size S becomes large, the estimated probability of

being nominated from equation 4 will go to 1 for all nodes.

3.1.C. Search Mode. As we will see in the ‘‘Results’’ section, the list mode does

a very good job by itself sampling from the Add Health and Facebook networks with

a sample size of 500. However, in larger networks, the precision of the samples

decreases because it takes longer to explore the network.10 In this section, we add

the search mode, which pushes the sampling process toward unexplored parts of the

network. Note that the search mode used here is not the same thing as other search-

ing modes commonly used in graph theory, such as breadth-first or depth-first

search.11 The search mode is not designed to be used by itself but only in combina-

tion with the list mode. We call the combination of the search and list modes the

‘‘hybrid’’ approach.
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The intuition behind the search mode is based on the idea of a ‘‘bridge node’’ or

a ‘‘structural hole’’ (Burt 1995) that connects two clusters of the network. Imagine

that node Y1 is in a cluster of the network Y that has not been sampled, except for

node Y1. As depicted in Figure 1, node Y1 links across a bridge to cluster X, which

has been extensively sampled. Y1’s friends on the Y side of the bridge have been

nominated (by Y1)—so they appear on the network roster L—but they have not been

sampled or nominated by any other respondent. These nodes represent the leading

edge of an unexplored area of the network. The search mode is designed to sample

from the friends of nodes like Y1 that are on the other side of a bridge to an under-

sampled cluster of the network.

Let dj indicate the degree of node j, which is the number of friends that node j has

in the network. Let cj indicate the number of j’s friends who are unsampled and have

been nominated once and only once so far in the survey. For example, in Figure 1,

the friends of Y1 on the Y side of the bridge (nodes Y8, Y5, and Y2) have been nomi-

nated only by Y1, whereas all nodes on the X side of the bridge that are unsampled

(nodes X1, X3, and X8) have all been nominated at least two times. Define the pro-

portion of j’s friends that have been nominated 1 time as p1j =
cj

dj
. p1j is calculated for

all nodes in the network that have been sampled so far. In addition to p1j, we calcu-

late P1 (defined above as the overall proportion of nodes 2 L that have only one

nomination). Finally, we designate A1 as the minimum value of P1 at which the

search mode will be used. When P1 gets low, this means that most of the nodes have

been nominated by at least two respondents, which suggests that the network is fairly

well explored, and we can use the list mode without sacrificing much in the way of

sampling efficiency.

The search mode consists of the following steps:

C1. (a) Calculate p1j for all sampled nodes, and (b) calculate P1, the proportion

of nominated nodes that have been nominated only one time.

1
8

7 3

6
5

2

4

Cluster Y Cluster X

15

2

8

3
4

6
7

Figure 1. Illustrative network with two clusters
Note: Hollow nodes are unsampled, and dark nodes are sampled. Circles indicate nodes nominated two

or more times, squares indicate nodes nominated one time, and triangles indicate nodes nominated zero

times.
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C2. If P1, the overall proportion of nodes 2 L with one nomination, is greater

than A1, the minimum threshold for the search mode, use the search mode.

If P1 � A1, default to the list mode. This ensures that the list mode is used

when much of the network has been explored. In the sampling simulations

below, we set A1 to 0.4, but we tried other settings as well. Note that the

reason we choose to switch to the list mode at a specific point (i.e., when P1

� A1), rather than always use the search mode or ‘‘blend’’ the two modes

together, is that the asymptotic properties of the search mode will depend on

the structure of the particular network being sampled. In contrast, the list

mode converges to SRS as L approaches the true size of the network.

C3. We want to identify bridge nodes (such as Y1 in Figure 1) and then inter-

view their unsampled friends who have only one nomination (i.e., nodes

Y2, Y5, and Y8 in Figure 1). To do this, we will identify the five nodes that

are the most likely to be bridges and then sample one of their unsampled

network ties. In this step, we calculate the probability that a particular node

is a bridge node. To begin with, we argue that bridge nodes are nodes that

are the largest positive outliers in terms of their observed value of cj, that

is, nodes that have unexpectedly large values of cj given their degree and

the current value of P1. First, we estimate the probability node j has cj or

Figure 2. The 400-node test network
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more friends with only one nomination (conditional on node j being

sampled), given dj and P1, using the binomial distribution

p(X � cjjj 2 L) ffi
Xdj

i = cj

dj

cj

� �
P1cj (1� P1)dj�cj ; ð6Þ

where, as noted above, P1 is the overall proportion of nodes 2 L with one

nomination so far in the sample.

C4. We estimate how ‘‘unexpected’’ the current value of cj is for node j by mul-

tiplying the binomial tail probability in equation 6 by the estimated prob-

ability that node j has been nominated by step S of the sample (from

equation 4 above)12:

p(X � cj) ffi p nomj 3 p(X � cjjj 2 L): ð7Þ

C5. Finally, we define the relative probability of node j being a bridge node as

p(bridge) = 1� p(X � cj): ð7bÞ

C6. We choose the five nodes with the highest values of p(bridge) as the set of

most likely bridge nodes.13

C7. Randomly select one of the top five bridge nodes from step C3, weighting

the five nodes on the basis of their values of p(bridgej) from equation 7b.

Let BR indicate the selected bridge node.

C8. Let BR indicate the set of BR’s friends that are unsampled and have one

and only one nomination so far in the sample. Randomly select one node

from BR1 as the next interview.

C9. To incorporate the CSR from the search mode with the even sampling

aspect of the list mode, we calculate the sampling probability of each eligi-

ble friend F from any node j that was among the top five bridge nodes in

step C4. For the eligible friends of one of the top five bridge nodes j:

p(node F sampled with search) =
1

cj

p(bridgej)P5
k = 1

p(bridgek)

; ð8Þ

where cj is how many eligible friends node j has, and
p(bridgej)P5

k = 1

p(bridgek )

is the prob-

ability that node j is chosen from among the top five possible bridge nodes.

This sampling rate in equation 8 is then added to the CSR for node F (see
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equation 2 above in section 3.B) each time that node F is eligible to be

sampled via the search mode. As discussed above in section 3.B, the list

mode ensures the uniform sampling of all nominated nodes as the sample

progresses by temporarily excluding any node that has a higher CSR than

the ESR defined in equation 3. As a result, any oversampling of bridge

nodes at the beginning of a sample will gradually disappear once the net-

work is explored and the sampling process shifts to the list mode (i.e.

after P1 � A1 in step C2).

C10. After calculating the search mode sampling rates for the eligible nodes in

step C6, we update the network rosters and return to step C1 of the search

mode, using the search mode when P1 . A1 and the list mode when P1

� A1 in step C2. Repeat this process until the desired sample size is

reached (see section 5 for a discussion of an ideal stopping point on the

basis of convergence to SRS).

3.2 The Hybrid Approach

What we are calling the ‘‘hybrid’’ approach consists of the combination of the list

and search modes. The sample starts out in search mode, but it defaults to the list

mode when the network has been reasonably well explored, as indicated by the

threshold A1 in steps C2 and C7 above.

3.3 Sample Mean

For all of the NSM variants (naive list, list, and hybrid), the sample mean from a sin-

gle sample of S cases is calculated as the weighted mean m
_

:

m
_

=
Xs = S

s = 1

Ys �
wsPk = S

k = 1

wk

0
BBB@

1
CCCA; ð9Þ

where s refers to the node that was sampled in the sth step of the sample and the case

specific weight, ws, is defined as

ws =
1

CSRs � (p noms)
; ð10Þ

and CSR and p_nom are defined above (see equations 2, 4, and 8).

4. SIMULATED SAMPLING

In this section, we test the performance of NSM (hybrid, list, and naive list), RDS,

and RWs along a variety of dimensions by using simulated sampling on a test
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network and 162 real social networks. After these simulated tests, in section 5 we

consider the question of convergence to SRS, and in section 6 we address the broader

question of the feasibility of the method. Before we begin, we note that the complete

computer code needed to replicate our findings (in Stata’s Mata language) with the

test network described below, as well as examples of alternative approaches, is avail-

able on the first author’s Web page (www.tedmouw.org).

In our simulated sampling, we use RDS and RW to provide a meaningful compar-

ison to evaluate the efficiency of NSM. For RW, we start with a single, randomly

selected seed, and all subsequent cases are drawn randomly from among the friends

of the current case, sampling with replacement. RDS is conducted similar to RW,

with the next respondent selected as a referral from among the friends of the current

respondent. In these simulations, the difference between RW and RDS is that RDS

allows for multiple referrals from each respondent.14 We follow the simulated sam-

pling approach of Goel and Salganik (2010) whereby the probabilities of referring 0,

1, 2, or 3 new respondents in RDS are 1
3

, 1
6
, 1

6
, and 1

3
, respectively.

For each network, we use the different methods to collect 500 samples of 500

cases, starting at a randomly selected node and sampling with replacement. Although

in practice, the RDS methodology does not sample with replacement, we simulate

our respondent-driven samples with replacement because RDS has been shown to be

biased when conducted without replacement as the proportion of the population

sampled gets large (Gile and Handcock 2010)15; in this sense, sampling with replace-

ment is necessary to allow us to observe the asymptotic properties of RDS.

Furthermore, other prominent simulation work evaluating RDS has also been con-

ducted with replacement (Goel and Salganik 2010). To maintain consistency with

those results and to provide a fair comparison between our RDS, RW, and NSM

results, we therefore conduct all of the simulations with replacement.

4.1 Test Statistics

We compute four different test statistics to evaluate the competing methods: average

bias, MAB, standard deviation (SD), and the design effect (DE). First, define the bias

(or error) of a single sample i (of size S cases) collected from network j as

biasij = m̂ij � mj; ð11Þ

where mj is the population mean of the dependent variable in network j, and m̂ij is the

estimate of mj in sample i. The average bias in network j (for a particular method) is

average biasj =

PN
i = 1

biasij

N
; ð12Þ

where N is the number of different samples collected.
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Because the average bias for any particular network could be positive or negative,

we want to take the absolute value of the average bias of each network when summar-

izing it across different networks. Define the summary measure of average bias as

average bias =
1

J

XJ

j = 1

PN
i = 1

biasij

N

��������

��������
; ð13Þ

where J is the number of different networks in the study.

The MAB—the measure of the average magnitude of the error for each

sample—is

MABj =

PN
i = 1

biasij

�� ��
N

: ð14Þ

Note that the difference between the average bias and the MAB as defined in equa-

tions 13 and 14 is where the absolute value is taken, before or after averaging the bias

across the N samples collected for each network. The variance of the bias, which we

refer to as the ‘‘sampling variance’’ throughout this article (Groves et al. 2009:58) is

sampling variance = s2
j =

PN
i = 1

(m̂ij � mj)
2

N
, (and SDj = sj): ð15Þ

To compare the sampling variance to SRS, we also calculate the DE, which is

DEj =
s2

j

s2
SRSj

; ð16Þ

where s2
SRSj is the sampling variance of SRS with a sample size of S cases.

4.2 Test Network Results

Before we sample from the Add Health and Facebook networks, we first try the meth-

ods using an artificial test network. The reason we do this is that this network is very

easy to visualize, it would be simple to reproduce, and it illustrates key differences in

the performance of the competing methods. The test network consists of 400 nodes

divided into four clusters of 100 nodes each. Each cluster is characterized by a differ-

ent degree (i.e., the number of friends each person has). In Figure 2, all of the nodes

have one tie to someone in a different cluster, with the remainder of their social ties

within their cluster. The four clusters A (bottom right cluster in Figure 2), B (bottom

left), C (center), and D (top) have degrees 7, 12, 17, and 22 respectively. This is a
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highly connected network, because every node has a tie to someone else in a different

cluster.

To evaluate our simulated sampling from the test network, we examine the overall

average degree in the network, which is 14.5, as the dependent variable. Because

degree is clustered within the network, this should pose a problem for RW- and

RDS-based approaches. Likewise, because the NSM, RDS, and RW approaches all

rely on degree as either a means of exploring the network (NSM) or as a postsample

weight, average degree is a measure that we suspect will be challenging for all three

approaches. For the test network, we collected 1,000 samples of 1,000 cases for each

method, sampling with replacement.

Figure 3 shows the results for each method with sample sizes varying from 50 to

1,000 cases, and Table 3 presents the same results in tabular format for sample sizes

of 250, 500, and 1,000 cases. Because of space constraints in Figure 3, the naive list
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1.
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50 500 1000 50 500 1000 50 500 1000 50 500 1000

Bi
as

0
1
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50 500 1000 50 500 1000 50 500 1000 50 500 1000

M
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50 500 1000 50 500 1000 50 500 1000 50 500 1000
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1

6 6
1 1

20
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1
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(A) Hybrid (B) List (C) RDS (D) Random Walk

D
E

Figure 3. Test network sampling results (400 nodes, dependent variable: average degree)
Notes: Bias = average bias; design effect (DE) =

s2
method

s2
SRS

; MAB = mean absolute bias; RDS = respondent-

driven sampling; SD = standard deviation.
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results are only displayed in Table 3. Starting with the first row of Figure 3, we see

that although all of the methods are asymptotically unbiased, the NSM hybrid and

list approaches get to zero much more rapidly than RDS or RW. A similar advantage

is evident for the MAB, SD, and DE. The magnitude of the advantage is clear: The

hybrid and list approaches do better on MAB, SD, and DE with a sample size of

about 75 than the RDS and RW approaches do with a sample size of 1,000. In practi-

cal terms, this means that generalizable inferences with tighter confidence intervals

can be made from far fewer respondents collected via NSM.

Table 3 includes results for the naive list approach. Recall that the key difference

between the list and naive list approaches is that the former chooses cases using a

weighting scheme to ensure that nodes sampled early in the process are not overre-

presented. Although the naive list approach is very intuitive, it does not perform as

well as the list approach, with a DE of 2.066 (with a sample size of 1,000). On the

other hand, it still outperforms RDS and RW, which have DEs of 181 and 21.1,

respectively.

The hybrid and list approaches do well because once the network has been ‘‘dis-

covered’’ (i.e., as the list L of nominated nodes approaches the population size G),

these approaches are identical to SRS. RDS and RW have difficulty with this net-

work because although it is highly connected, it is easy for them to get stuck in one

of the clusters because they are wandering ‘‘blindly’’ with no accumulated network

information other than a list of sampled cases. For example, for each node in cluster

D (the bottom right-hand cluster), there are 19 within-cluster ties and 1 tie to some-

one out of the cluster. As a result, if RDS or RW is currently interviewing in cluster

D, it has only a 5 percent chance of exiting to a different cluster.

Table 3. Test Network Sampling Results (400 Nodes, Dependent Variable: Average Degree)

Method

Variable Steps Hybrid List Naive List RDS Random Walk

Average bias 250 0.00036 0.00472 0.1472 0.1278 0.02825
500 0.000084 0.000014 0.07651 0.09775 0.01458

1,000 5.00e-06 0.001203 0.03781 0.06936 0.01095
Mean absolute bias 250 0.05281 0.05526 0.1831 0.5254 0.2555

500 0.04001 0.03938 0.09757 0.4568 0.173
1,000 0.02756 0.02808 0.05165 0.3933 0.1304

Design effect 250 0.8986 0.9615 5.49 76.95 20.72
500 1.015 0.962 3.221 119.6 18.8

1,000 0.9963 0.9845 2.066 181 21.1
Standard deviation 250 0.06711 0.06942 0.1659 0.6211 0.3223

500 0.05045 0.0491 0.08985 0.5476 0.2171
1,000 0.03533 0.03512 0.05088 0.4762 0.1626

Note: RDS = respondent-driven sampling.
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Although, as shown in Figure 3, the SD of RDS and RW declines as the sample

size increases, it does so at a relatively slow rate compared to SRS. As a result, the

DE for these two methods does not go down; it is relatively constant for RW and goes

up for RDS, which indicates that RDS loses ground relative to SRS in this network as

the sample size increases. In contrast, the hybrid and list approaches have DEs that

rapidly approach 1 in Figure 3, indicating increasing parity with SRS.

4.3 Overview of the Add Health and Facebook Networks

Table 4 shows descriptive statistics for the Add Health and Facebook networks. In all

of the networks discussed here, we use only the largest connected component. This is

a common and necessary approach in evaluating link-tracing samples via simulation;

indeed, a key assumption of RDS is that the results are only generalizable to the

‘‘giant component’’ (Volz and Heckathorn 2008). One of the data sets we use is the

network data from Add Health. These are some of the most commonly studied net-

work data in the world and are perfect for our evaluations because they contain

numerous instantiations of the same network survey conducted at the same time in

different places. The differences between networks allow us to explore how charac-

teristics of those networks relate to biases and inefficiencies in the various methods

we test. In the Add Health networks, we have treated all nominations as symmetric

(i.e., we forced nonreciprocated nominations to be symmetric). Goel and Salganik

(2010) considered the sensitivity of RDS results to this assumption in the Add Health

data by looking only at ties that were actually reciprocated in the original data and

found that the DEs were considerably worse than in the case where all ties were

treated as symmetric.16

In the Add Health networks, we use our simulations to obtain estimates of the pro-

portion white students in the school. Goel and Salganik (2010) found that race had

the highest DEs among the variables they tested in the Add Health data, which, we

argue, makes it a good variable to use to evaluate our competing methodologies. We

limit our sample to the 62 schools at which the proportion white was between 0.2

and 0.8.17 In Table 4A, we see that the size of the Add Health networks ranges from

110 to 1,610 nodes. Because the respondents were asked to list their top 5 male and

female friends, the average degree is low in these networks compared with the

Facebook networks we discuss below; the global average degree is 8.48, and it

ranges from a low of 4.28 to a high of 11.99. As a measure of the level of intergroup

friendship taking group size into account, homophily is defined as 1 minus the ratio

of the number of cross-group friends divided by the expected number of cross-group

friends under random assignment.18 Overall, the level of white-nonwhite homophily

averages 0.562 and goes from a low of 20.021 to 0.816.

A final descriptive measure is ‘‘Y-mean degree difference,’’ which is the percent-

age difference in the average degree by the dependent variable (white vs. nonwhite

in the case of the Add Health networks). This variable is a measure of whether one

group has, on average, more friends in the network than the other group. We
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calculate it as the absolute value of the difference in average degree among the

groups divided by the overall average degree:

y-mean degree difference = 100
�dY = 1 � �dY = 0

�� ��
�d

; ð17Þ

where �dY = A represents the mean degree for group A of the dependent variable. The

reason for including this variable is that we want to see whether having an imbalance

in average degree across the dependent variable affects the results. Gjoka et al.

(2010) find that average degree is particularly challenging to estimate with link-

tracing approaches, so we expect that unbiased estimation of this variable will be

especially challenging for the methods we test. The test network in Figure 2 is an

extreme example of a network in which average degree differs sharply across the dif-

ferent groups (i.e., clusters A, B, C, and D).

4.4 Add Health Results

We start our discussion of the Add Health results by considering one of the smallest

networks, network 112, which consists of 210 nodes and is 54.2 percent white. Of the

1,638 social ties in the network, 250 of them are cross-race ties, indicating that there

is considerable cross-race interaction even though friendship is racially segregated.

Figure 4 shows a picture of this network. A key observation to make from this

picture is that although the total number of intergroup ties is large (250), they are not

Figure 4. Add Health network 112
Note: Nodes are colored by student race (black squares = white; gray circles = nonwhite).
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evenly distributed across students. This is a contrast with the test network, in which

every node had 1 tie to a different cluster. This is important because it means that

RDS and RW, which have no memory of the overall network structure, can get stuck

in the interior of each of the two large clusters defined by race (white vs. nonwhite)

in Figure 4, with a limited chance of transitioning to the other cluster.

Figure 5 and Table 5 show the results for sampling from network 112 with 500

samples of 500 cases each. The basic pattern of the results is similar to the test net-

work discussed above. Although all of the approaches appear to be asymptotically

unbiased, the hybrid and list approaches show the most rapid approach toward zero

average bias. Once again, the key result is the dramatic difference in the DEs. The

hybrid and list approaches have DEs of 1 after about 200 cases (see Figure 5),

while RDS and RW do not get anywhere close to 1 after 500 cases. The naive list

approach does not do as well as the list approach, with a DE of 4.697 in samples

of 500 cases.

Columns 1 and 2 of Table 6 show the overall results from sampling the 62 Add

Health networks. Column 1 shows the average (and median) DE and bias with the

school’s proportion white as the dependent variable, and column 2 shows the results

with mean degree as the dependent variable. The overall finding in column 1 is that

the NSM hybrid and list approaches do very well on these networks with proportion

white as the dependent variable, with average DEs of 1.110 and 1.236, respectively.

In contrast, RDS has an average DE of 66.883 (median DE = 47.766), and RW has an

average DE of 12.698. A key finding in Table 6 is that in these relatively small net-

works, the list approach does very well. Because the list approach is so intuitive and

simple (see section 3.B), we believe that it may have considerable appeal as an

Table 5. Sampling Results from Add Health Network 112

Method

Variable Steps Hybrid List Naive List RDS Random Walk

Average bias 250 0.001193 0.001793 0.004337 0.005243 0.006462
400 0.001797 0.0006971 0.003917 0.007063 0.002586
500 0.0009851 0.0001629 0.003245 0.006052 0.002788

Mean absolute bias 250 0.02489 0.02484 0.07168 0.2647 0.1201
400 0.01988 0.01888 0.04704 0.2479 0.09969
500 0.01767 0.01759 0.03981 0.2405 0.09269

Design effect 250 1.002 0.990 7.554 89.73 21.47
400 1.002 0.9243 5.285 127.4 24.14
500 0.9961 0.9852 4.697 150.2 25.16

Standard deviation 250 0.03161 0.03142 0.0868 0.2992 0.1463
400 0.02499 0.024 0.0574 0.2818 0.1227
500 0.02229 0.02217 0.0484 0.2737 0.112

Notes: Add Health = National Longitudinal Study of Adolescent Health; RDS = respondent-driven

sampling.
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alternative to RDS when sampling from a network when the precision of the esti-

mates is a concern and it is possible to collect basic network data. In column 2, we

see a similar pattern of results with average degree as the dependent variable; the

hybrid and list approaches have the lowest average DEs (1.069 and 1.132, respec-

tively), while the average DE for RDS is considerably higher (25.206).19

4.5 Facebook Networks

To test NSM on larger networks, we use data from Facebook, an online social net-

work launched in February 2004. The data we use here were collected in 2005, when

Facebook membership was available only to those affiliated with universities (i.e.,

those with a valid ‘‘.edu’’ e-mail address at schools that had been registered with the

company). The data set we use contains a census of all users and the connections

among them at 100 university networks that were part of Facebook in September

2005 (an overview of these data and access information is given in Traud et al. 2010

and Traud, Mucha, and Porter 2010]).20

The bounded nature of student friendships within universities, in addition to repli-

cations over 100 social settings, is an important part of why this data set is
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Figure 5. Sampling results from National Longitudinal Study of Adolescent Health network
112
Note: RDS = respondent-driven sampling.
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Table 6. Overall Add Health and Facebook Results

Network Source and Dependent Variable

1 2 3
Add Healtha Add Healtha Facebookb

Dependent variable Proportion white Average degree Proportion freshman
Average design effects

NSM: hybrid 1.110 1.069 1.198
NSM: list 1.236 1.132 2.267
Naive list 5.605 2.152 22.85
RDSc 83.931
RDS full datad 66.883 25.206 86.135
RWc 12.031
RW full datad 12.698 6.652 19.107

Median design effects
NSM: hybrid 1.055 1.188
NSM: list 1.093 1.969
Naive list 3.317 17.507
RDSc 78.145
RDS full datad 47.766 85.987
RWc 11.517
RW full datad 9.273 18.294

Average bias
NSM: hybrid 0.0019 0.0328 0.0048
NSM: list 0.0021 0.0424 0.0117
Naive list 0.0168 0.3172 0.0483
RDSc 0.1363
RDS full datad 0.0091 0.0867 0.018
RWc 0.1047
RW full datad 0.0032 0.0228 0.0049

Median average bias
NSM: hybrid 0.0011 0.0037
NSM: list 0.0013 0.0091
Naive list 0.0116 0.0470
RDSc 0.1060
RDS full datad 0.005 0.0164
RWc 0.0691
RW full datad 0.0022 0.0044

Notes: Add Health = National Longitudinal Study of Adolescent Health; NSM = network sampling with

memory; RDS = respondent-driven sampling; RW = random walk.

a. The Add Health networks are run on the largest connected component from the complete network

data for each school.

b. Because the average number of ties in the Facebook data was so high, the maximum number of ties

was truncated at 20 for the NSM hybrid, list, and naive list methods. This makes it harder for these

methods. See the text for details.

c. RDS and RW were run on the same truncated data (maximum degree of 20) as the NSM approaches

for the Facebook data.

d. RDS and RW were run on the full data, with no limit on maximum degree. See text for details.
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appropriate for this analysis. Sociologists have used Facebook for a variety of

research questions (Lewis et al. 2008; Wimmer and Lewis 2010). The most impor-

tant feature of these data for our purposes is that they are reasonable representations

of offline friendships within universities (Boyd and Ellison 2008; Clouston et al.

2009; Haythornthwaite 2005; Lampe, Ellison, and Steinfield 2007), though there are

some nuances to this (Ellison, Steinfield, and Lampe 2006). At that time, users were

also relatively open about sharing information online (Gross and Acquisti 2005),

which allows us access to several self-reported attributes of respondents.

In our sampling tests using the Facebook data, the proportion of first-year students

(freshmen) in the network is our dependent variable. In preparing the data, we deleted

cases that were missing information on the respondent’s year in school. In addition,

because the average degree of these networks was so large, we decided to test the

hybrid and list approaches by limiting the number of friends that each respondent

could list to a maximum of 20, a number that is below the average degree we found

in the field test of collecting network data we conducted that is discussed below in

section 6 and which could reasonably be collected in a survey. For NSM, more net-

work data—in terms of the average number of friends listed on respondents’ network

rosters—is always better, because it means that the network is revealed faster (i.e.,

L! G more quickly; see section 3.B). Thus, by limiting the number of friends each

respondent can list, we are making it harder for NSM to sample from these networks.

For the RDS and RW approaches, we will run the samples twice, once with a maxi-

mum of 20 friends per respondent and once with all of the friends. In the simulated

samples with the networks truncated at 20 friends, before the sample begins, we ran-

domly select 20 friends per respondent if the respondent has more than 20 friends.

These 20 friends are randomly rechosen for each replication of the sample.21

Table 4B presents basic descriptive statistics on the 100 Facebook networks. The

level of friendship homophily between freshman and nonfreshman is high in these

data, averaging 0.786 and ranging from 0.378 to 0.9. The number of nodes averages

4,635, with a maximum of 16,278. The mean degree for the full data is 81.14, which

is the reason we choose to limit the maximum degree for the hybrid and list

approaches to 20.

4.6 Facebook Results

We begin by discussing results for the largest Facebook university network (network

100), which has 16,280 nodes. This network is 30.3 percent freshman and has a

homophily level of 0.683. The average degree is 106.4 (19.77 in the network trun-

cated at degree 20). Figure 6 shows the results for RDS and RW using the full net-

works (because both RDS and RW do better on the full networks), and both the

truncated and full networks are presented in Table 7.

The important finding in network 100 is that the hybrid approach continues to do

very well, with an average bias of 0.0003 after 500 steps and a MAB of 0.01661. To

put the MAB result into perspective, the first row of Figure 6 shows that hybrid does

better with a sample size of about 75 than either RDS or RW does with 500. In
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addition, while the list approach performed as well as the hybrid approach on the

smaller Add Health networks, this is not the case in this large Facebook network.

Although the second row of Figure 6 shows that the DE of list is declining, it does

not do so as rapidly as the hybrid approach, resulting in a DE of 4.379 after 500 steps

(cases), compared with 1.079 for the hybrid approach.

Column 3 of Table 6 presents the overall results for the Facebook networks. The

results confirm the basic discussion from network 100 above: Hybrid and list have

much lower DEs than RDS or RW. In addition, the DE of the list approach is slightly

higher on the larger Facebook networks compared with the Add Health networks,

and the naive list approach does not do much better than RW. In contrast to the list

approach, the DE of hybrid stays low (1.198).

As a summary measure of the overall results combining the Add Health (with pro-

portion white as the dependent variable) and the Facebook networks together, we

note that the average DE on these 162 networks using the hybrid approach and list

approaches was 1.16 and 1.87, respectively. These DEs are close to what would be

expected in SRS (DE = 1) and perform significantly better compared with the DEs of
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Figure 6. Sampling results for the largest facebook university network (16,280 nodes,
dependent variable: proportion freshman)
Note: RDS = respondent-driven sampling.

Mouw and Verdery 237

 at University of North Carolina at Chapel Hill on December 19, 2012smx.sagepub.comDownloaded from 

http://smx.sagepub.com/


77.4 for RDS and 12.3 for RW.22 On all 162 of the networks, both the NSM hybrid

and list approaches had lower DEs than RDS or RW.

Finally, to evaluate the sensitivity of the observed DE and average bias to the net-

work characteristics from Table 4, in Tables 8 and 9 we combine the results of the

Add Health and Facebook networks and run a regression analysis.23 In Table 8, the

dependent variable is the DE, and in Table 9, the dependent variable is the average

bias calculated using equation 13 above. The bottom two rows of each table present

the mean and SD of the dependent variable as a reminder that these vary considerably

across the different methods. All the models include a dummy variable indicating the

source of the data (1 = Add Health, 0 = Facebook). As discussed above in reference

to Table 4, the variable ‘‘Y-mean degree difference’’ is a measure of whether the

mean degree varies across categories of the dependent variable (see equation 17

above). We use the natural log of the number of nodes to measure network size.

There are three key findings in the analysis of the DE in Table 8. First, for the

hybrid approach, none of the variables have a significant effect (at the p = .05 level):

In other words, the method does not appear to be sensitive, with samples of 500

cases, to either the level of homophily or the size of the network. Overall, the R2

value for the hybrid approach is .076, meaning that little of the variation in DEs is

explained by these features of the networks. Second, the measure of network size,

Table 8. Ordinary Least Squares Regression Results for the Design Effect, Combined Add
Health and Facebook Networks

Method

Variable Hybrid List Naive List RDS Random Walk

Homophily 0.158 –0.136 28.36*** 284.1*** 40.41***
(0.144) (0.338) (5.563) (15.16) (2.757)

Add Health network –0.182 0.471 16.67*** 71.37*** 6.933**
(0.114) (0.268) (4.427) (11.99) (2.181)

ln(nodes) –0.00576 0.964*** 12.14*** –8.917** –2.030***
(0.0278) (0.0654) (1.252) (2.930) (0.533)

Average degree –0.00111 –0.00451 –0.0159 –0.0950 0.0436
(0.00121) (0.00285) (0.0494) (0.127) (0.0232)

Y-mean degree difference 0.00714 0.0130 0.00201 –0.139 0.207**
(0.00376) (0.00886) (0.144) (0.397) (0.0722)

Constant 1.202*** –5.133*** –94.72*** –56.61* 0.0898
(0.236) (0.555) (9.751) (24.88) (4.525)

Observations 162 162 162 162 162
R2 .076 .698 .658 .718 .687
Mean design effect 1.16 1.85 15.48 78.76 16.65
SD design effect 0.25 1.05 15.90 48.54 8.38

Notes: Standard errors are in parentheses. Add Health = Add Health = National Longitudinal Study of

Adolescent Health; RDS = respondent-driven sampling.

*p \ .05. **p \ .01. ***p \ .001.
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ln(nodes), has a significant positive effect on the DE for the list approach, which

means that the precision of the estimates declines as the network size increases. Note

that the effect is not overwhelmingly large, as going from 500 nodes (ln[nodes] =

6.21) to 10,000 nodes (ln[nodes] = 9.21) would increase the predicted DE by 0.964

3 3 = 2.892. Moreover, note that the problem of network size for the list approach

can be solved by sampling a larger number of cases to reduce the sampling variance.

However, a comparison of the results for the hybrid and list models indicates the rea-

son the hybrid approach is superior: By using the search mode to explore the net-

work, it increases the efficiency of the sampling process. Next, note that the naive

list approach is very sensitive to network size, with a coefficient of 12.14 for

ln(nodes) compared with 0.964 for the list approach.

The third key finding of Table 8 is that RDS, RW, and the naive list approaches

are very sensitive to the level of homophily in the network. The coefficient on homo-

phily for RDS is very large and significant (b = 284.1, SE = 15.16). In contrast, homo-

phily has no effect on the hybrid and list approaches.

Table 9 presents results for the analysis of the average bias across the 162 net-

works of the combined results. All five of these approaches are asymptotically

unbiased, in the sense that as the sample size goes to infinity, the average bias will

go to zero. As discussed above, for the hybrid, list, and naive list approaches, the

asymptotic unbiased behavior derives from the fact that they are sampling from the

accumulated list of network members L. However, in these finite samples of 500

cases, all five methods exhibit a small amount of bias (as indicated by the second

row from the bottom in Table 9). As indicated in Table 9, the size of the network

affects the magnitude of the finite sample bias for the hybrid, list, and naive list

approaches, while homophily and average degree are significant predictors of the

bias for RDS, and homophily is for RW. Notably, average degree is not associated

with bias in the NSM approaches.24

5. SAMPLING DIAGNOSTICS AND CONVERGENCE TO
SIMPLE RANDOM SAMPLING

Earlier in the article, we made the claim that NSM converges to SRS as the sample

size increases and all individuals in the population have been nominated on the net-

work rosters (i.e., as LS ! G). In this section, we state the assumptions that are

behind this claim and show how the data from an NSM sample might be used to

indicate when convergence to SRS has been achieved. To be clear about what we are

claiming, by ‘‘converge,’’ we mean that once NSM has ‘‘converged’’ to SRS, the

properties and characteristics of samples obtained by NSM would be indistinguish-

able from samples obtained from SRS with the same sample size. Although our work

in this regard is preliminary, it is our belief that such a diagnostic would provide an

immensely useful tool for researchers in practice, allowing them to understand and

quantify the statistical validity of a sample collected via NSM as well as to facilitate

comparisons across samples.
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Requirements for convergence to SRS:

5.1. The network is connected. Starting from any node, all individuals can be

reached by following a path of connections in the network.

5.2. Respondents are willing to provide network data, and the quality of the

network data (i.e., partial name information, basic demographics, last three

digits of telephone numbers, etc.) is sufficient to uniquely identify network

members.

5.3. The sample size reaches a point at which the number of nominated nodes

in the network, L, is equal to the estimated size of the network using the

capture-recapture method (Ĝ in equation 5).

5.4. ‘‘Even’’ sampling has been used (see section 3.B), and all nominated nodes

have the same cumulative sampling probability.25 See step 251 of Table 2

for an example.

Figures 7 and 8 show how convergence to SRS can be identified using Facebook

network 10 as an example, using NSM’s hybrid approach with 500 replications and

samples of 1,000 cases for each replication. Facebook network 10 has 1,092 nodes.

Figure 7 shows the average bias, the proportion of cases that are sampled using the

search mode, and P1 (the proportion of nominated nodes with only one nomination)

by step (i.e., the number of cases in the sample). Because the search mode is used

only when P1 . 0.4 (i.e., when more than 40 percent of the nominated nodes have

only been nominated once), the use of the search mode drops to zero as the average

value of P1 drops below 0.4 around step 100. In addition, the value of P1 declines

Proportion of cases sampled with the Search mode

P1 (proportion of nominated nodes with only 1 nomination)

Average bias

0
.2

.4
.6

.8
1

0 200 400 600 800 1000
step

Figure 7. Diagnostic properties for Facebook network 10 by sample size (step)
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toward zero as the sample size increases, indicating that the network is being com-

pletely explored around step 600. In addition, the average bias declines very rapidly,

and by step 300 it is very small, indicating that the sample estimate has become very

accurate at this point.

Figure 8 shows the estimated network size (Ĝ) and number of nominated nodes

by step (LS) in this network, along with the observed 95 percent confidence intervals

for both of these measures. It is easy to see in Figure 8 that they are both converging

to the true value of the population size, 1,092. When Ĝ = LS , then all the nodes in the

network have been revealed, and requirement 5.3 has been satisfied. Provided

requirements 5.1, 5.2, and 5.4 are also satisfied, then NSM is statistically equivalent

to SRS. As discussed above, the basic intuition why this is true is that the even sam-

pling component of the list mode (section 3.B) ensures that all people who are nomi-

nated in the survey are subject to the same CSR. Once everyone in population A has

been nominated (LS = N), then we have a representative sample of S cases from pop-

ulation A.

The benefit of Figure 8 is that it illustrates how the data collected in an NSM sur-

vey can be used as a diagnostic tool to evaluate how close the sample is to converging

to SRS. One way to define an adequate stopping rule for an NSM sample would be to

collect a sample size S* such that Ĝ = LS�.
In Figure 7, it is clear that for this particular network, a high level of accuracy is

reached around step 300, as the average bias is very close to zero. In Figure 8, we see

that L and Ĝ are very close by step 300 (they differ by 7 percent), although complete

convergence between L and Ĝ is not reached until around step 600. If we define the

Estimated size of the network using the capture-recapture
method (estimated G)

number of nominated nodes in the survey (L)

[Actual size of the network = 1092 nodes]

70
0

90
0

10
92

13
00

50 200 400 600 800 1000
step

Note: dashed lines indicate the observed 95% confidence
interval based on 500 replications

Figure 8. Number of nominated nodes and estimated network size by sample size (step),
Facebook network
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degree of convergence between the number of nominated cases L and the estimated

population size Ĝ as

q = 100 3
L

Ĝ
; ð18Þ

then it may be the case that the marginal return in accuracy of going from q = 0.93 to

q = 0.999 in general is very small. In future research, we plan on refining the defini-

tion of the optimal stopping point for an NSM sample on the basis of different values

of q, allowing for a reasonable threshold of convergence between Ĝ and L by testing

the marginal gains in precision for a range of values of q over the 162 networks eval-

uated here.26 Because the purpose of this section is simply to illustrate that such diag-

nostics are possible with NSM, we leave further refinement of these issues to future

work.

6. IS IT FEASIBLE?

We envision NSM being used by two types of research projects. First, network-based

sampling methods, such as RDS, are attractive when the target population is rare or

hidden and there is no sampling frame available for the researcher. Second, some-

times the goal of the survey is to actually collect data about the network itself, and

NSM allows the researcher to collect an accurate sample while following the links

connecting people in a network together. In this section, we discuss the feasibility of

collecting the network data needed to run NSM. There are three questions that must

be answered to make that decision: (1) How many people can we expect individuals

to nominate? (2) Can we protect confidentiality but at the same time match alters

who have been nominated by multiple individuals? (3) How sensitive is the method

to coding errors and other logistical problems? We consider these first two issues in

depth using our experience surveying a hidden population and evidence from the lit-

erature. We then present some preliminary work on the third question.

6.1 Collecting Network Data

In the summer of 2010, we conducted a pilot study to test the feasibility of collecting

network data on a difficult-to-reach population. Along with several other colleagues,

we collected data on the migration network connecting a Mexican community from

a medium-sized town in the state of Guanajuato to migrants from that hometown cur-

rently living in North Carolina and Houston, Texas. The resulting survey, the 2010

Network Survey of Immigration and Transnationalism (NSIT) had a sample size of

150 in North Carolina, 52 in Houston, and 407 in Guanajuato. We started the data

collection with a snowball sample in North Carolina and Houston and then followed

links back to Guanajuato.

We asked respondents to nominate network alters who were eligible to be in the

survey and to whom they could refer us. To protect the privacy of respondents, we
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collected data on only the first four letters of the first name and last name of the

respondent’s network members, along with key social and demographic information

that we could use for identification: nickname, gender, age, occupation, and number

of children living in the household. To identify unique individuals in the resulting

network data, we wrote a matching program in Stata that tolerates slight differences

in the demographic and name variables in determining whether two network nomina-

tions (from different interviews) represent the same person. We used the Levenshtein

edit distance (the number of edits needed to match two strings, cf. Reif 2010) to

allow for reporting and coding errors in the first name, last name, and nickname.

The North Carolina and Houston samples asked for up to 10 friends and 5 family

members currently living in the destination community in the United States, up to 6

total family and friends currently living in the origin city in Mexico, and up to 5

returned migrants currently living in the origin. Of the 150 respondents in North

Carolina, the average number of network members was 21.2.27 The network ques-

tions were placed at the beginning of the survey and took an average of 10 minutes

to complete. All of the interviews, aside from pretests, were conducted by commu-

nity members. Of the 8,538 nominations of friends and family members in the survey

overall, all but 19 reported a first name, 98.96 percent reported a last name, and 94.7

percent reported age.

In addition to the data we collected in the 2010 NSIT, there is other evidence that

similar amounts of network data could realistically be collected on social surveys. A

reasonable question is how many alters a given ego might nominate, because the

larger the number of nominations a person can give, the quicker the search mode will

be able to explore the network. In general, it is clear that over a period of time, peo-

ple come into contact with far more individuals than they are aware of—Boissevain

(1974) and McCarty et al. (2000) estimated contact networks of between 1,500 and

2,000 people—but may be only able to remember and identify a fraction of these.

Dunbar (1998) reported that people typically can only remember about 150 individu-

als. In a recent example of extensive network data collection, Sandberg et al. (2008)

found that residents of rural Senegal named an average of 21.4 unique network alters

(the interquartile range was 17–25) when asked 15 name generating questions with

open-ended numbers of potential responses. Similarly, in a classic work, McCallister

and Fischer (1978) found that most respondents in the Northern California

Community Survey were able to name between 10 and 30 alters and the type of rela-

tion to them in 20 minutes of interview time (a pilot survey elicited an average of

20.3 names and the total survey an average of 18.5). Overall, on the basis of the

results from the 2010 NSIT and other surveys that have obtained between 10 and 30

nominations per respondent, we argue that it is possible to collect enough network

data to improve the accuracy of network sampling. Of course, it might not be possi-

ble for all target populations, if the actual networks are sparse, or if participants are

reluctant to provide (or it is deemed unsafe to ask them to provide) information about

network ties.
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6.2 Can We Protect Confidentiality in Stigmatized Populations?

Our work with the NSIT provides some evidence that it is possible to match alters

using a small set of demographic characteristics that are unlikely to put respondents

of stigmatized populations at risk for deductive disclosure. Other ways to achieve

this are being explored in the literature. Dombrowski et al. (2011) devised a method

to estimate the size of hidden populations using the capture-recapture method within

a respondent-driven sample. They achieved this by collecting data on respondents’

appearance (approximate height, weight, hair color, eye color, gender, and race/eth-

nicity) as well as a transformation of the last three digits of their telephone numbers.

These digits were encoded as either being even or odd and greater than or equal to

five. Such a six-bit code is highly likely to be unique within a given population but

at the same time is nearly impossible to trace back to an individual person. They also

solicited this information about five of each respondent’s friends who were eligible

for inclusion in the study. By matching such data on the individuals at risk for being

surveyed (by being friends with individuals who were surveyed and being eligible

members of the population) to those who were actually interviewed, the authors were

able to apply capture-recapture techniques and estimate the size of the total network.

Of course, not all populations of interest have mobile phones on which they can

look up their acquaintances’ numbers, and there is the potential that looking up such

information may add considerable time to the survey. However, other encoding

schemes could be devised. For instance, one could apply the same logic to the first

three letters of individuals’ first and last names (e.g., is it a vowel or consonant; is it

at the beginning, in the middle, or at the end of the alphabet). Because we believe

that the issues of respondent risk need to be weighed on a case-by-case basis, we do

not have specific recommendations as to what is the best means of collecting such

data, but we note that very promising approaches are being tested. On the basis of

our experience with the NSIT and the evidence in the literature, we are confident that

appropriate data collection strategies could be designed to maximize respondent

anonymity while at the same time making network matching techniques feasible.

6.3 Test of the Effect of Network Coding Errors

How robust are the results to the possibility of coding errors in the identification of

network members? First, a long literature has documented problematic evidence of

recall bias and underenumeration in network measurement through self-reports (e.g.,

Bell, Montoya, and Atkinson 2000; Bernard and Killworth 1977; Bignami-Van

Assche and Watkins 2004; Cascairo, Carley, and Krackhardt 1999; Coleman, Katz,

and Menzel 1966; Eagle, Pentland, and Lazer 2009; Freeman, Romney, and Freeman

1987; Hammer 1984). It is realistic, certainly, to anticipate a certain degree of coding

error in identifying network members on the basis of survey data. Nonetheless, the

combination of partial name data and key demographic variables may result in a

fairly high level of accuracy. In the 2010 NSIT, we looked over the data for the first

1,000 nominations with the help of community members after running the matching
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program on first name, last name, nickname, age, gender, origin community, and

number of children, and our assessment was that the program was working just as

accurately as someone with a detailed knowledge of the community could do in

assigning unique identifiers to the nominations. This degree of matching is especially

heartening given the relative name similarities in the population and the cultural pre-

ference for nicknames.

Other attempts at matching network nominations to individuals in different popu-

lations have yielded similar results. Sandberg et al. (2008) tested the feasibility of

augmenting a large data collection project (N ’ 30,000) with a social network sur-

vey that collected detailed relationship data from a sample of respondents. The inno-

vation was that network alters would be linked to existing data records on them,

circumventing the need to rely on ego reports of alter characteristics and greatly

reducing the costs of network data collection. In field testing this approach, they

found that approximately 88 percent of nominated alters could be uniquely identified

with just five pieces of information that could reasonably be collected from respon-

dents. This evidence further underscores the feasibility of our proposed approach.

We tested the impact of coding errors on the efficiency of NSM by used a modi-

fied algorithm that creates errors in the coding of the network data with a certain

probability. Network ties that are coded in error are assigned to someone else in the

currently revealed network (a sampled or unsampled, but nominated, node). We

tested the impact of errors on a sample of 44 of our large university Facebook net-

works discussed above, using a 15 percent rate of error. Using the hybrid method

with a 15 percent error rate, the average DE for these 44 networks with 500 replica-

tions of a sample size of 500 was 1.27, compared with a 1.23 average DE for the

hybrid method with no errors in the coding of the network data. For the purposes of

comparison, the average DE for RDS with no errors in coding on these three net-

works was 65.66.28 Overall, these results indicate that a moderate level of error in

the coding of the network data has only a minimal affect the performance of NSM.

At the same time, high levels of coding error would certainly reduce the efficiency

of NSM, and it is crucial that careful attention be paid to collecting partial name and

demographic identifiers that will facilitate a high level of accuracy in the coding of

the network data.

Before NSM is implemented in the field, other logistical considerations should

also be taken into account. These issues include developing a better understanding of

how nonresponse may bias results, developing protocols to ensure respondent protec-

tion, and testing the method’s efficacy when list-based sampling is implemented only

a small number of times, which would reduce the burden of recontacting respondents.

For example, in future research, we plan on testing a variant of NSM that minimizes

or eliminates the need for recontact by entering the respondent’s network information

directly into a computer or a smart phone during the interview, updating the network,

and asking for a referral at the end of the interview itself. On the basis of the updated

network data, we could use the search mode to select whom we ask for a referral to

among the respondent’s network roster on the basis of which node is most likely to

lead to new or underexplored parts of the network. This approach would reduce the
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cost of conducting an NSM survey while still using the accumulated network data to

make the sampling process more efficient than a conventional RW.

7. DISCUSSION AND CONCLUSION

RDS is an RW-based sampling approach that has become popular as a method of col-

lecting data from hidden or rare populations. However, the sampling variance of RDS

depends on the structure of the underlying social network (Bassetti and Diaconis

2006; Goel and Salganik 2009), which is unknown to a researcher using RDS data

that consists of only the links that were followed by the sample. Recent tests using

real networks indicate that the sampling variance of respondent-driven samples may

be unacceptably high (Goel and Salganik 2010; Lu et al. 2012; McCreesh et al.

2012).

In this article, we propose an alternative approach, NSM, which collects network

rosters as part of the survey and uses the revealed list of network members to improve

the efficiency of the sampling process. NSM samples from the list of network mem-

bers using two sampling modes, list and search. As discussed above, the basic innova-

tion of the list mode is quite simple: Rather than take a randomly selected link from

the current case as in RDS or an RW, in the list mode, the next node to be sampled is

chosen by sampling with replacement from the complete list of all people who have

been nominated in the survey. Although RDS and RWs can get stuck in segregated

islands of the network, which increases the sampling variance, the list mode does not

get stuck, because it draws the next case from the set of all individuals who have

appeared on the network rosters. In addition, the list mode ensures that all people on

the network list are sampled at the same rate by sampling newly discovered network

members at the same CSR of the sample as a whole. As the survey progresses and all

the members of the population are gradually added to the network list, the list mode

becomes identical to the process of SRS.

As discussed above in section 3.C, the search mode is designed to speed up the

process of exploring the network by giving priority to ‘‘bridge nodes’’ that connect

the edges of the currently explored network to underexplored areas of the network.

The hybrid approach that we test in the simulated sampling combines the list and

search modes, using the search mode initially and then defaulting to the list mode

once the network has been explored.

We test the relative performance of NSM versus RDS, RW, and SRS by conduct-

ing simulated sampling on 162 observed social networks from Add Health and

Facebook. The advantage of testing the performance of the methods on so many dif-

ferent networks is that we can be more confident that the results are not due to the

idiosyncrasies of any particular network. The networks ranged in size from 110 to

16,278 nodes, with different levels of homophily and mean degree. Moreover,

because these are real social networks, they will exhibit the kinds of complex net-

work structures that artificial test networks may not have. Overall, as discussed

above, our results indicated that NSM’s hybrid and list approaches had lower DEs

than RDS or RW on all 162 of the Add Health and Facebook networks, based on
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drawing 500 samples of 500 cases each from each network. In particular, the hybrid

approach resulted in a 98.5 percent reduction in the average DE compared with RDS

(1.16 vs. 77.4).

Although in all of our tests, NSM is a more efficient method of sampling from a

social network than RDS, there is an added cost, which is the time and effort needed

to collect network data as well as recontact respondents to get referrals to previously

nominated cases.29 As discussed above in section 6, we conducted a pilot study on

collecting network data from a hidden population—immigrants in North Carolina

from a specific origin community in Mexico—and averaged 21.4 links per respondent

in North Carolina, obtaining almost universal responses on the first four letters of the

first and last names and the ages of the members of respondents’ networks. This indi-

cates that it is feasible to collect the level of network data needed to achieve the gains

in accuracy we present in this article. At the same time, it is important to emphasize

that we do not anticipate that NSM will be applicable for every situation. Nonetheless,

researchers are devising innovative ways to collect this type of data in even highly

stigmatized populations (Dombrowski et al. 2011). Indeed, Dombrowski et al. (2011)

demonstrated that individuals’ network alters could be uniquely identified for the pur-

poses of capture-recapture methods while maintaining respondent confidentiality in

exactly the type of population in which RDS was designed to be implemented.

Even if the added difficulty of collecting network data means that NSM is not uni-

versally applicable for all types of hidden or difficult to reach populations, we believe

there are two reasons it represents an important addition to the literature on sampling

from networks. First, if researchers can collect network data as part of their survey,

our results indicate large potential gains in sampling efficiency: Simply put, it takes

far fewer cases for NSM to reach a given level of precision compared with RDS.

Recognition of the trade-off between the cost and precision of the survey is important

even if a research project elects to use RDS or a conventional link-tracing survey

design. Second, on a theoretical level, NSM provides a clear example of how gains

in accuracy can result from a simple modification of the sampling algorithm com-

pared with an RW-based approach. We seek to bridge the recent literature in mathe-

matics and computer science on sampling large Internet-based networks with the

social science literature on sampling hidden or rare populations on the basis of face-

to-face or telephone interviews. Although there is a fundamental difference in the

cost of conducting an interview (trivial for an Internet-based network and high for a

face-to-face interview), there is likely to be considerable synergy and convergence

between these two literatures in the future. In this light, we see NSM as a first step in

demonstrating how collecting network data can improve the accuracy of sampling

from networks.

In particular, we anticipate several avenues of future research. First, it is possible

that with computer-assisted interviews (i.e., inputting the network data directly dur-

ing the interview) the interviewer might be able to solicit referrals to newly identified

nodes of the network at the conclusion of each interview, thereby reducing the fre-

quency with which respondents would need to be recontacted to get a referral to the

next person to interview. Second, we plan to explore whether it is possible to use
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resampling methods to infer the sampling variance of the resulting NSM sample.

The idea would be to predict the ties from unsampled but nominated nodes using a

statistical model of the network and then repeatedly resample the data from the pre-

dicted network to calculate bootstrap standard errors. Third, we intend to assess how

the accumulated network data could be used to develop in an optimal stopping rule

regarding the sample size required to reach a certain degree of sampling precision.

Overall, in the current article, we have presented an alternative method for sam-

pling from network-based populations that is both transparent in terms of its underly-

ing mechanism and, in all of our tests, considerably more accurate than the methods

currently in use. Indeed, in the results presented in Figures 3, 5, and 6, we found that

a roughly equivalent level of sampling precision was achieved with 75 cases sampled

using our proposed method as could be found with 500 to 1,000 cases using the cur-

rently dominant approach. Furthermore, we have offered first steps toward quantify-

ing the extent of NSM’s results’ convergence to SRS, diagnostics that are currently

unavailable or inadequate (cf. Neely 2009; Wejnert 2009) in the network sampling

literature to date. Although our proposed method would constitute an increased logis-

tical burden for researchers as well as other potential trade-offs, we believe it pre-

sents considerable promise. Rather than an end point, we view this as a call for future

advances in improving the efficiency and precision of sampling from networks using

survey data on the revealed network of the target population.
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Notes

1. For simplicity of writing, we occasionally refer to sampling from a social network as

‘‘network sampling’’ in this article. When we do this, we mean sampling from a social

network, not the large body of work dedicated to making inferences about social network

structures from more limited data (e.g., Potter et al. 2011).

2. This discussion offers some intuition about RDS’s efficacy as it is used in practice (when

its assumptions are not always met; Gile and Handcock 2010). The fact that RDS is con-

ducted without replacement adds an element of memory to the RW process, which, on

the basis of these results, would suggest that it may prove more efficient in without-
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replacement practice than with-replacement theory (although see Gile 2011).

Additionally, the fact that RDS in practice starts from multiple seed individuals may also

improve its efficiency, as per Ribeiro and Towsley (2010).

3. In our proposed approach, sampling with replacement is achieved by keeping track of

how many times individuals are sampled and using this as a weight. No repeat interviews

are actually conducted.

4. Multiple seeds can be used; in general, this is most effective if they are from different

parts of the network.

5. L also includes the initial seed respondent(s).

6. One way to resolve this is to not turn on even sampling until P1 (the proportion of nomi-

nated nodes that have only one nomination) is less than 0.4, which ensures that large net-

works are explored before even sampling is turned on. See equation 5 for a discussion of

estimating the network size using P1.

7. This is because, at the start of even sampling, all nodes that have already been nominated

will have CSR . ESR. Using the 100 nodes with the lowest CSR is a way to gradually

‘‘wean’’ the sample away from nodes with high CSRs.

8. The reason for this is that after the start of even sampling, nodes 1 and 301 were not eli-

gible for sampling again until their CSR was less than or equal to the current ESR, as

described in section 3.B.1. Thus, they will be within the sampling rate of one step of the

ESR.

9. In the calculation of P1, any node that has been sampled is counted as a node that has

more than one nomination.

10. This can be seen by looking at the effect of network size (natural log of nodes) on the

design effect for the list mode in Table 8.

11. NSM’s search mode skips to other parts of the network on the basis of a probabilistic

model of where the bridge nodes are most likely to be. In contrast, breadth-first search

explores all of the nodes neighboring the currently sampled node before moving down

the chain, while depth-first search moves down the chain of connections as fast as possi-

ble before visiting nodes that have already been nominated.

12. A simpler method is just to choose among the nodes with the highest vales of p1j, but this

gives an advantage to nodes with low degree, because it is easier to obtain higher values

of p1j just by chance. In addition, for simplicity, we ignore the probability that j is

sampled conditional on being nominated, because this will be the same for all nominated

nodes after the initiation of even sampling, and the goal in equation 7 is a relative mea-

sure of the likelihood of a bridge node.

13. We also tried choosing among the top 2 and top 10 bridge nodes, and both of these alter-

natives seemed to work equally well. In addition, to ensure that these really are what we

mean by ‘‘bridge nodes,’’ only nodes with p1j � 0.4 are eligible for consideration in

equation 7.

14. We weight both the RW and RDS results by their inverse degree. For the binary out-

comes we consider here (Y), we calculate the estimated proportion of Y = 1 in our RWs

as p̂rw(Y = 1) =

PS

j
yj=djPS

j
1=dj

, where yj is the value of variable y for individual j (either 0 or 1),

dj is individual j’s degree, and S is the number of sampled cases. Some have called an

RW weighted in this fashion a reweighted RW (cf. Gjoka et al. 2010). This estimator is

the RDS2 estimator in current use, so we also apply it to our respondent-driven samples.
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15. RW approaches have not been implemented in the field to our knowledge, but even if

they were, it is a challenge to imagine that they would be conducted with replacement in

a human population.

16. Goel and Salganik (2009) also considered how DEs varied across high schools and high

school–middle school combinations and found no substantive differences. As such, we do

not distinguish these types of schools in our analysis; however, we do examine how biases

vary across different observed parameters of these networks.

17. We decided to omit schools with supermajorities by race, because these cases were

extremely problematic for RDS. This is in line with Wejnert’s (2009) findings that very

small or very large proportions pose particular challenges for RDS.

18. By ‘‘random assignment,’’ we mean the number of cross-group friends if each person’s

friends were assigned randomly to different groups. For example, in a school that is 80

percent white and 20 percent nonwhite, 20 percent of white students’ friends would be

nonwhite and 80 percent of nonwhite students’ friends would be white.

19. In addition, we note that the average finite-sample bias in column 2 of Table 6 is compa-

rable with the average bias reported in column 1, provided we take the fact that the global

mean of the dependent in column 2 variable (mean degree in the school) is about 10 times

larger than the global mean of proportion white.

20. In the year after these data were captured, Facebook expanded to allow access to nonuni-

versity students.

21. To ensure that the truncated networks are connected, we arrange the nodes sequentially

by class year (freshman vs. nonfreshman) in a single line running from 1 to G and assign

each node ties to their immediate neighbor in front and behind them. These are included

in each instantiation of the network and are counted toward the friendship totals for each

node. This procedure has little effect on the overall structure of the network, however, as

the untruncated networks are highly connected.

22. Using the full network data, the average DEs for RDS and RW were 78.7 and 16.65,

respectively.

23. We use the results for proportion white as the dependent variable for the Add Health data.

24. Overall, when evaluating these results, note that we have chosen two dependent variables

(percentage nonwhite and percentage first-year students) for which there are high levels

of homophily and clustering. The DE for RDS would be lower if we had chosen networks

with lower levels of clustering or different dependent variables. In practice, of course, the

researcher will not know how clustered the network of the target population is, and the

goal here has been to test NSM on networks that are difficult for network-based sampling

algorithms.

25. Note that the use of sampling weights (equations 9 and 10) adjusts for unequal sampling

rates among nodes prior to convergence to SRS.

26. In general, we also note that we observed a very high level of accuracy for the predicted pop-

ulation size Ĝ using the capture-recapture method on all of the 162 networks that we tested.

27. In the Mexico sample, we asked for data on up to 6 friends and 6 relatives currently liv-

ing in Guanajuato and up to 6 friends and family members living in North Carolina and

Houston. The overall average degree was 14.13.

28. The average finite sample bias was .0057, compared with .0036 for the hybrid

approaches with and without the 15 percent error rate with the truncated data (maxi-

mum degree of 20), compared with .297 and .0118 for RDS with the truncated and full

network data.
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29. Recontacting participants may not be feasible in some hidden populations. See the final

paragraph of section 6 for a discussion of a future variant of NSM that would eliminate

recontact with respondents.
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